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Dear Editor:

Tissue-engineered three dimensional skeletal muscle organ-like structures have

been formed in vitro from primary myoblasts by several different techniques (3,4,13). The

resulting "organoids" display many of the characteristics of in vivo muscle including

parallel arrays of postmitotic fibers organized into fascicle-like structures with tendon-like

ends. They are contractile, express adult isoforms of contractile proteins, can perform

directed work, and can be maintained in culture for at least 4 weeks. The in vivo-like

characteristics and durability of the muscle organoids make them an ideal model system

for long term in vitro studies on mechanotransduction mechanisms and on muscle atrophy

induced by decreased muscle tension (1,8,11,12). Tissue engineered skeletal muscle

organoids have also been used as an implantable device for the systemic delivery of

recombinant proteins (7).

Current methods for muscle organoid formation are limited by the number which

can be formed at one time, and by the complicated procedures necessary to induce

organogenesis. Induction of muscle organogenesis from skeletal myoblasts utilizes either

internally or externally generated mechanical tension as an important element for the

alignment of the fusing myoblasts and subsequent organoid formation. For example, a

computerized mechanical cell stimulator device provides external longitudinal mechanical

forces during the first 2-3 days of myoblast proliferation to orient the developing myofibers

parallel to each other and to the direction of stretch (9). After 6-10 days of additional

complex mechanical stimulation, the edges of the cell monolayer roll in to form an organ-

like structure (13). Similar muscle organogenesis has been induced passively by plating
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high density monotayers of avian myoblasts onto a collagen-coated, flexible plastic

substrate held in place by stainless steel pins (3,4). After 10-15 days of culture, the

differentiated myofibers begin twitching spontaneously, generating internal tensions which

cause the cell sheet to detach from the flexible substrate while remaining held in place by

the stainless steel pins. While these methods have been useful for small-scale muscle

organogenesis studies, they have not been scaled up to provide the large number of

samples necessary for more complex studies. In this report, we describe a simple method

for generating large numbers of muscle organoids from either primary embryonic avian

or neonatal rodent myoblasts.

Myoblasts are plated into flexible, rectangular culture wells (20mm long x 10mm

wide x 10ms deep) constructed from transparent 0.01 inch thick silicone rubber sheeting

(Silicone Speciality Fabricators, Inc., Paso Robles, CA ). A cardboard cutting pattem sheet

containing approximately 50 well outlines (Figure 1A insert) is placed under three 20 cm

x 28 cm silicone rubber sheets, and the well edges cut with a scapel. Wells are formed

from the silicone membrane by folding the middle flap at each end up and the two outside

flaps in and gluing with RTV silicone sealant (General Electric Co, Waterford, NY) applied

with a 10 ml syringe. After gluing into the three dimensional shape, pieces of chemically

cleaned stainless steel screening (9) 5 mm wide x 10 mm long, and bent 90 ° in the middle,

are glued to the bottom of the culture wells at each end with the RTV silicone sealant

(FigurelA). The screening provides a surface to which the cells can attach as they

proliferate. Several hundred wells can be constructed in several days and the wells can

be reused 2-3 time,_ before they begin to leak.

\

w



The wells are secured to notched aluminum brackets (Figure 1B) using stainless

steel screws and washers placed through small holes cut in the ends of the wells. Each

bracket can hold up to 12 culture wells, and consists of 2 square bars (1 cm x 1 cm x 20

cm) with twelve 3 mm wide by 6 mm deep notches on the top. The brackets are connected

at their ends by slotted flat bars (10.5 cm x 1.2 cm) which allows the distance between

notched bars to be adjusted. The wells are placed into the bracket notches and the screws

tightened to hold the wells in place. For optimal formation of organoids, the bar spacing

is set at 30 mm; this stretches the wells approximately 50% from their resting length of

20mm. After the wells are attached to the brackets and stretched, they are sprayed with

6-8 coats of 0.1% (w/v) Type 1 collagen (Collaborative Biomedical Products, Bedford MA)

using an airbrush or chromatographic sprayer (10). They are placed in tissue culture trays

(USA Scientific Plastics, Ocala, FL), and sterilized with ethylene oxide; they can also be

autoclaved if desired. The sterile wells can be stored at room temperature for 2 - 3 weeks.

On the day of culture, the wells are preincubated with Earle's Balanced Salt Solution

(EBSS) for several hours before cell plating.

Avian pectoralis myoblasts (5) or neonatal rat myoblasts (2) are isolated and plated

using normal tissue culture techniques. For the avian muscle cells, plating density is 5 to

7.5 x 106/well in 1 mL of 85/10/5 growth medium [Basal Medium Eagles containing 10%

horse serum, 5% chicken embryo extract, penicillin (100U/mL), and amphotedcin B

(5pg/mL)]. Unless otherwise noted, all tissue culture reagents are purchased from Sigma

Chemical Co., St. Louis, MO. Cultures are fed daily with fresh 85/10/5. Avian myoblasts

proliferate and fuse into multinucleated myotubes beginning 48 h after plating, align
g
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parallel to the direction of substratum tension, and become striated and contractile by 96-

120 h. Approximately 5 days after plating, the cell layer lifts Offthe bottom of the silicone

rubber wells, (while remaining attached to the screens at both ends), and the long edges

of the cell layer roll in to form a muscle organoid (Figure 2A) similar to those formed using

(13)o These organoids contain organized and contractilemore complex equipment

myofibers (Figure 2B).

Mammalian organoids can be tissue engineered from primary neonatal rodent

myoblasts using a similar technique but require the addition of a Matrigel TM - collagen

solution to the cells. Myoblasts are isolated from the forelimbs and hindlimbs of rat

neonates following the method of Rando and Blau (2). Isolated primary cells are

suspended in a 1:6 solution of Matrigel TM (Collaborative Biomedical Products) : collagen

(Type 1, 1.6mg/mL) prepared with growth medium [GM: Ham's F-10 containing 20% fetal

bovine serum, and 2.5 ng/mL bFGF, penicillin (100U/mL) and streptomycin (50 U/mL)], and

plated into the wells at a concentration of 4 x106 cells/0.750mL. The wells are placed in

a 37°C incubator for 2-6 h to allow the Matrigel TM- collagen mixture to gel before carefully

overlaying with lml GM. Cultures are maintained in GM for 3 days, fusion medium [DMEM

(high glucose) with 10% horse serum + penicillin] for 3 days, and maintenance medium

[DMEM (high glucose) with 10% home serum, 5% FBS + penicillin) for up to 4 weeks. The

gel:cell mixture condenses and dehydrates during the first 2-3 days, pulling off the elastic

substratum and generating internal tensions to align the forming myofibers (Figure 2C).

The extracellular matrix gel required for mammalian but not avian organoid development

may be due to the greater proliferative ability of connective tissue forming fibroblasts in the
B



latter than the former cultures (unpublished observation). Myoblast cell lines such as

C2C12 which are devoid of fibroblasts can also be formed into organoids, but also require

the Matrigel TM - collagen mixture (data not shown).

The differentiated muscle organoids in the elastic wells can be removed from the

brackets without tension release and transferred to other tissue culture chambers for long

term muscle growth/atrophy studies. This is accomplished by placing a stainless steel

screen "spacer" 1 cm wide and the length of the culture well into the wells just above the

organoid. The wells can then be removed from the brackets by slipping the well screws out

of the top of the bracket notches. Using this simple technique, avian muscle organoids

have been removed from the brackets, transferred to modified bioreactor cartridges of a

continuous perfusion system (CELLCO, inc., Germantown, MD) and maintained without

myofiber atrophy for up to three weeks in DMEM with 2.5% (v/v) horse serum (6).

In summary, these procedures offer several advantages over previous techniques

for muscle organoid formation. No mechanical stretching apparatus is needed, the

procedures are simplified, and large numbers of uniform, in vivo-like organoids are easily

formed and transferrable to other tissue culture environments. These new techniques

should prove useful in studies where large scale skeletal muscle organoid culturing is

required.

(Supported by NASA Grants NAGW-4674 and NAG2-914)
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FIGURE LEGENDS

Figure 1. Rectangular culture wells are formed from silicone rubber sheeting and

secured to aluminum brackets. Wells measuring 20ram long x lOmm wide x 10ram deep

are glued from a precut thin silicone rubber sheet (insert) and formed into three

dimensional wells (A). Stainless steel screening at each end of the boat provides a

surface for cell attachment. Wells are secured to notched aluminum brackets using

stainless steels screws and washers (B). Each bracket holds 12 culture wells and the

spacing between the two notched aluminum bars is adjustable. Bars represent 10 mm and

25 mm in (A) and (B), respectively.

Figure 2. Skeletal muscle organoids contain parallel arrays of myofibers expressing

sarcomeric tropomyosin. Avian and rnammalian my0blasts are grown and maintained

in the culture wells as described. After 14-18 days in culture, muscle organoids (A) are

fixed, and stained with an antibody against sarcomeric tropomyosin (Sigma Chem Co., St.

Louis MO), followed by incubation with an avidin-biotinylated secondary antibody coupled

to horse radish peroxidase (Vectastain, Vector Laboratories, Budingame CA), and

development with diaminobenzidine to form a dark precipitate. (B) avian skeletal muscle

organoid, whole mount stained, showing aligned surface myofibers; (C) mammalian

organoid formed from neonatal rat skeletal myoblasts with myofiber alignment in the long

axis of the organoid. Bars represent 10 mm, 200 pM and 50 pM in (A), (B), and (C),

respectively.
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FIGURE 1 Shansky et al.
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FIGURE 2 Shansky et al.
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